Squares vs. rectangles: which ones are heavier?

Jérôme Plût

2013-12-03

Weighing squares and rectangles

Which one of these is heavier?

- Comparing areas is difficult!
- We compare the Hamming weight of their areas instead.
- We pick random squares and rectangles of size 2^N.
- We compare squares and rectangles to lines (random numbers of size 2^{2N} , with expected Hamming weight N).

Divide and conquer

On closer look, squares and rectangles have both a **big end** (top half) and a **small end** (bottom half):

With boring numbers instead:

This work is politically correct and inclusive. In particular, we respect all kinds of mathematics, and shall do analysis both in the real numbers (big end) and the 2-adic numbers (small end).

On the small end

2-adic squares

A 2-adic number is a square iff it is of the form

$$(\dots, 0)$$
 001 $\underbrace{00\dots00}_{even}$.

with geometric distribution.

- The expected weight of the lower half of a square is −3/2 bits.
- The expected weight of the lower half of a rectangle is -1/2 bits.
- The lower half of squares is lighter by 1 bit.

On the big end

Let $x \in [0, 2^N[.$

- The N bits on the big end of x^2 are the N first bits of $(x/2^N)^2$.
- We know the density f of $(x/2^N)^2$ in the interval [0, 1]:

$$f(t)dt = rac{dt}{2\sqrt{t}}.$$

• We compute the average Hamming weight of a random number with density *f*.

Squares vs. rectangles		Sparklines!
\def\more{more}Divide \	more, conquer	\more

- The Hamming weight S_n of $t \in [0, 1]$ is the sum of the Hamming weight W_i of individual bits.
- The functions W_i are periodic with period 2^{-i} :

The expected value of W_i is

$$\overline{W}_i = \int_0^1 W_i(t) f(t) dt = \langle W_i, f \rangle_{L^2}.$$

We can compute this scalar product using Fourier series decomposition!

- We compute the Fourier coefficients of W_i and f on [0, 1].
- Since we are lazy, we compute only W_1 and then $W_i(x) = W_1(2^{i-1}x)$.

$$b_m(f) = 2 \int_0^1 \sin(2\pi m t) \frac{dt}{2\sqrt{t}} = \frac{2}{\sqrt{2\pi m}} \int_0^{\sqrt{2\pi m}} \sin(t^2) dt.$$

- We compute the Fourier coefficients of W_i and f on [0, 1].
- Since we are lazy, we compute only W_1 and then $W_i(x) = W_1(2^{i-1}x)$.

$$b_m(f) = 2 \int_0^1 \sin(2\pi m t) \frac{dt}{2\sqrt{t}} = \frac{\aleph}{\sqrt{\aleph}\pi m} \int_0^{\sqrt{2\pi m}} \sin(t^2) dt.$$

- We compute the Fourier coefficients of W_i and f on [0, 1].
- Since we are lazy, we compute only W_1 and then $W_i(x) = W_1(2^{i-1}x)$.

$$b_m(f) = 2\int_0^1 \sin(2\pi m t) \frac{dt}{2\sqrt{t}} = \frac{\aleph}{\sqrt{\aleph m}} \int_0^{\sqrt{2\pi m}} \sin(t^2) dt.$$

- We compute the Fourier coefficients of W_i and f on [0, 1].
- Since we are lazy, we compute only W_1 and then $W_i(x) = W_1(2^{i-1}x)$.

$$b_m(f) = 2\int_0^1 \sin(2\pi m t) \frac{dt}{2\sqrt{t}} = \frac{\chi}{\sqrt{2\pi m}} \int_0^{\sqrt{2\pi m}} \sin(t^2) dt.$$

- We compute the Fourier coefficients of W_i and f on [0, 1].
- Since we are lazy, we compute only W_1 and then $W_i(x) = W_1(2^{i-1}x)$.

Since we are lazy, we compute only the sine coefficients of f:

$$b_m(f) = 2\int_0^1 \sin(2\pi mt) \frac{dt}{2\sqrt{t}} = \frac{\chi}{\sqrt{2\pi m}} \int_0^{\sqrt{2\pi m}} \sin(t^2) dt.$$

We get:

$$b_m(f) \sim rac{1}{\sqrt{m}}.$$

Squares vs. rectangles	(Not pictured: lust)
Boringness is the cardinalest sing	

Sum the bits to compute the approximation for the Hamming weight of the first *n* bits on the big end:

$$S_n^{\text{sqr}} = \underbrace{-1.5872394631649104_{531239363...}}_{(\text{gluttony})} + \underbrace{\frac{\sqrt{2+3}}{2\pi} \zeta\left(\frac{3}{2}\right)}_{(\text{pride})} 2^{-n/2} + \underbrace{\cdots}_{(\text{sloth})}$$

	Squares vs. rectangles	(Not pictured: lust)
р ·		

Boringness is the cardinalest sing

Sum the bits to compute the approximation for the Hamming weight of the first *n* bits on the big end:

$$S_n^{\text{sqr}} = \underbrace{-1.5872394631649104_{531239363...}}_{(\text{gluttony})} + \underbrace{\frac{\sqrt{2+3}}{2\pi} \zeta\left(\frac{3}{2}\right)}_{(\text{pride})} 2^{-n/2} + \underbrace{\cdots}_{(\text{sloth})}$$

• We may perform the same computations for rectangles...

$$S_n^{\text{mul}} = -1.7289433 \underbrace{\cdots}_{(\text{envy})} + \frac{\log 2}{2} \cdot n \cdot 2^{-n} + O(2^{-n}).$$

The high half of squares is heavier by about 0.15 bit.

Sa	mares	VS	rectang	es

I forgot to put an introduction, so here it is

- [Amiel, Feix, Tunstall, Whelan, Marnane 2008] observed that squares tended to be about 1 bit lighter than rectangles.
- We wanted to determine the speed of convergence for increasing values of *n*.
- We find that the average difference between the Hamming weight of a square and a product, as $n \to \infty$, is 0.8492962 bits.
- So the actual speed of convergence to 1 bit is extremely slow.

ಧನ್ಷವಾದ!