Squares vs. rectangles: which ones are heavier?

Jérôme Plût

2013-12-03

Weighing squares and rectangles

Which one of these is heavier?

- Comparing areas is difficult!
- We compare the Hamming weight of their areas instead.
- We pick random squares and rectangles of size 2^{N}.
- We compare squares and rectangles to lines (random numbers of size $2^{2 N}$, with expected Hamming weight N).

Divide and conquer

On closer look, squares and rectangles have both a big end (top half) and a small end (bottom half):

With boring numbers instead:

$\underbrace{011011000001}$
 big end small end

This work is politically correct and inclusive. In particular, we respect all kinds of mathematics, and shall do analysis both in the real numbers (big end) and the 2 -adic numbers (small end).

On the small end

2-adic squares

A 2-adic number is a square iff it is of the form

$$
(\ldots . .) 001 \underbrace{00 \ldots 00}_{\text {even }} .
$$

with geometric distribution.

- The expected weight of the lower half of a square is $-3 / 2$ bits.
- The expected weight of the lower half of a rectangle is $-1 / 2$ bits.
- The lower half of squares is lighter by 1 bit.

On the big end

Let $x \in\left[0,2^{N}[\right.$.

- The N bits on the big end of x^{2} are the N first bits of $\left(x / 2^{N}\right)^{2}$.
- We know the density f of $\left(x / 2^{N}\right)^{2}$ in the interval $[0,1[$:

$$
f(t) d t=\frac{d t}{2 \sqrt{t}}
$$

■ We compute the average Hamming weight of a random number with density f.

\def \more\{more\}Divide \more, conquer \more

- The Hamming weight S_{n} of $t \in[0,1]$ is the sum of the Hamming weight W_{i} of individual bits.
- The functions W_{i} are periodic with period 2^{-i} :

- The expected value of W_{i} is

$$
\bar{W}_{i}=\int_{0}^{1} W_{i}(t) f(t) d t=\left\langle W_{i}, f\right\rangle_{L^{2}}
$$

- We can compute this scalar product using Fourier series decomposition!

How to get rid of @ll your annoying c0nstants 1 n one easy step

- We compute the Fourier coefficients of W_{i} and f on $[0,1]$.
- Since we are lazy, we compute only W_{1} and then $W_{i}(x)=W_{1}\left(2^{i-1} x\right)$.
- Since we are lazy, we compute only the sine coefficients of f :

$$
b_{m}(f)=2 \int_{0}^{1} \sin (2 \pi m t) \frac{d t}{2 \sqrt{t}}=\frac{2}{\sqrt{2 \pi m}} \int_{0}^{\sqrt{2 \pi m}} \sin \left(t^{2}\right) d t
$$

How to get rid of @ll your annoying c0nstants 1 n one easy step

- We compute the Fourier coefficients of W_{i} and f on $[0,1]$.
- Since we are lazy, we compute only W_{1} and then $W_{i}(x)=W_{1}\left(2^{i-1} x\right)$.
- Since we are lazy, we compute only the sine coefficients of f :

$$
b_{m}(f)=2 \int_{0}^{1} \sin (2 \pi m t) \frac{d t}{2 \sqrt{t}}=\frac{\not}{\sqrt{2 \pi m}} \int_{0}^{\sqrt{2 \pi m}} \sin \left(t^{2}\right) d t
$$

How to get rid of @ll your annoying c0nstants 1 n one easy step

- We compute the Fourier coefficients of W_{i} and f on $[0,1]$.
- Since we are lazy, we compute only W_{1} and then $W_{i}(x)=W_{1}\left(2^{i-1} x\right)$.
- Since we are lazy, we compute only the sine coefficients of f :

$$
b_{m}(f)=2 \int_{0}^{1} \sin (2 \pi m t) \frac{d t}{2 \sqrt{t}}=\frac{A}{\sqrt{2}} \int_{0}^{\sqrt{2 \pi m}} \sin \left(t^{2}\right) d t
$$

How to get rid of @ll your annoying c0nstants 1 n one easy step

- We compute the Fourier coefficients of W_{i} and f on $[0,1]$.
- Since we are lazy, we compute only W_{1} and then $W_{i}(x)=W_{1}\left(2^{i-1} x\right)$.
- Since we are lazy, we compute only the sine coefficients of f :

$$
b_{m}(f)=2 \int_{0}^{1} \sin (2 \pi m t) \frac{d t}{2 \sqrt{t}}=\frac{2}{\sqrt{2 m}} \int_{0}^{\sqrt{2 \pi m}} \sin \left(t^{2}\right) d t
$$

How to get rid of @ll your annoying c0nstants 1 n one easy step

- We compute the Fourier coefficients of W_{i} and f on $[0,1]$.
- Since we are lazy, we compute only W_{1} and then $W_{i}(x)=W_{1}\left(2^{i-1} x\right)$.
- Since we are lazy, we compute only the sine coefficients of f :

$$
b_{m}(f)=2 \int_{0}^{1} \sin (2 \pi m t) \frac{d t}{2 \sqrt{t}}=\frac{2}{\sqrt{2}} \int_{0}^{\sqrt{2 \pi m}} \sin \left(t^{2}\right) d t .
$$

- We get:

$$
b_{m}(f) \sim \frac{1}{\sqrt{m}}
$$

Boringness is the cardinalest sing

- Sum the bits to compute the approximation for the Hamming weight of the first n bits on the big end:

$$
S_{n}^{\text {sqr }}=\underbrace{-1.5872394631649104531239363 \ldots}_{\text {(gluttony) }}+\underbrace{\frac{\sqrt{2}+3}{2 \pi} \zeta\left(\frac{3}{2}\right)}_{\text {(pride) }} 2^{-n / 2}+\underbrace{\ldots}_{\text {(sloth) }}
$$

Boringness is the cardinalest sing

- Sum the bits to compute the approximation for the Hamming weight of the first n bits on the big end:

$$
S_{n}^{\text {sqr }}=\underbrace{-1.587239_{4631649104531239363 \ldots}}_{\text {(gluttony) }}+\underbrace{\frac{\sqrt{2}+3}{2 \pi} \zeta\left(\frac{3}{2}\right)}_{\text {(pride) }} 2^{-n / 2}+\underbrace{\ldots}_{\text {(sloth) }}
$$

■ We may perform the same computations for rectangles...

$$
S_{n}^{\text {mul }}=-1.7289433 \underbrace{\ldots}_{\text {(envy) }}+\frac{\log 2}{2} \cdot n \cdot 2^{-n}+O\left(2^{-n}\right) .
$$

- The high half of squares is heavier by about 0.15 bit.

I forgot to put an introduction, so here it is

■ [Amiel, Feix, Tunstall, Whelan, Marnane 2008] observed that squares tended to be about 1 bit lighter than rectangles.

- We wanted to determine the speed of convergence for increasing values of n.
- We find that the average difference between the Hamming weight of a square and a product, as $n \rightarrow \infty$, is 0.8492962 bits.

■ So the actual speed of convergence to 1 bit is extremely slow.

ధేన్నాదదద!
 γ

