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Squares vs. rectangles I’m sure nobody reads the text written here

Weighing squares and rectangles

Which one of these is heavier?

Comparing areas is difficult!
We compare the Hamming weight of their areas instead.
We pick random squares and rectangles of size 2N .
We compare squares and rectangles to lines (random numbers of size
22N , with expected Hamming weight N).
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Squares vs. rectangles Slide 3. In which the structure of the talk is announced.

Divide and conquer

On closer look, squares and rectangles have both a big end (top half) and
a small end (bottom half):

With boring numbers instead:

011011︸ ︷︷ ︸
big end

000001︸ ︷︷ ︸
small end

This work is politically correct and inclusive. In particular, we respect all
kinds of mathematics, and shall do analysis both in the real numbers (big
end) and the 2-adic numbers (small end).
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Squares vs. rectangles This is the only slide about 2-adic analysis

On the small end

2-adic squares

A 2-adic number is a square iff it is of the form

(. . . . . . )001 00 . . . 00︸ ︷︷ ︸
even

.

with geometric distribution.

The expected weight of the lower half of a square is −3/2 bits.
The expected weight of the lower half of a rectangle is −1/2 bits.

The lower half of squares is lighter by 1 bit.
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Squares vs. rectangles Wait, shouldn’t the real analysis part have come first?

On the big end

Let x ∈ [0, 2N [.

The N bits on the big end of x2 are the N first bits of (x/2N)2.
We know the density f of (x/2N)2 in the interval [0, 1[:

f (t)dt =
dt
2
√

t
.

We compute the average Hamming weight of a random number with
density f .
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Squares vs. rectangles Sparklines!

\def\more{more}Divide \more, conquer \more

The Hamming weight Sn of t ∈ [0, 1] is the sum of the Hamming
weight Wi of individual bits.
The functions Wi are periodic with period 2−i :

W1 : , W2 :

The expected value of Wi is

W i =

∫ 1

0
Wi (t)f (t)dt = 〈Wi , f 〉L2 .

We can compute this scalar product using Fourier series
decomposition!
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Squares vs. rectangles The worst part is: this works.

How to get rid of @ll your annoying c0nstants 1n one easy step

We compute the Fourier coefficients of Wi and f on [0, 1].
Since we are lazy, we compute only W1 and then Wi (x) = W1(2i−1x).
Since we are lazy, we compute only the sine coefficients of f :

bm(f ) = 2
∫ 1

0
sin(2πmt)

dt
2
√

t
=

2√
2πm

∫ √2πm

0
sin(t2) dt.

We get:

bm(f ) ∼
1√
m
.
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Squares vs. rectangles (Not pictured: lust)

Boringness is the cardinalest sing

Sum the bits to compute the approximation for the Hamming weight
of the first n bits on the big end:

S sqr
n = −1.5872394631649104531239363...︸ ︷︷ ︸

(gluttony)

+

√
2+ 3
2π

ζ
(3

2

)
︸ ︷︷ ︸

(pride)

2−n/2 + . . .︸︷︷︸
(sloth)

We may perform the same computations for rectangles...

Smul
n = −1.7289433 . . .︸︷︷︸

(envy)

+
log 2
2
· n · 2−n + O(2−n).

The high half of squares is heavier by about 0.15 bit.
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Squares vs. rectangles What was this all about anyway?

I forgot to put an introduction, so here it is

[Amiel, Feix, Tunstall, Whelan, Marnane 2008] observed that squares
tended to be about 1 bit lighter than rectangles.
We wanted to determine the speed of convergence for increasing
values of n.
We find that the average difference between the Hamming weight of a
square and a product, as n→∞, is 0.8492962 bits.

So the actual speed of convergence to 1 bit is extremely slow.

ಧನ ದ!
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