(Anonymous) Compact HIBE From Standard Assumptions Follow-up on the best paper award winner

Somindu C. Ramanna Palash Sarkar

Appied Statistics Unit Indian Statistical Institute, Kolkata

Asiacrypt 2013 Rump Session

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Our Results

Two HIBEs from the IBE of Jutla and Roy [Asiacrypt 2013]

- ► Anonymous *Я-CC-HIBE*
- ► Non-anonymous *CC-HIBE*

with

- constant size ciphertexts (3+1 group elements)
- instantiation from Type-3 pairings
- adaptive security from static standard assumptions (SXDH)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• degradation independent of depth of HIBE (O(q))

which was not possible from previously known IBE schemes.

Anonymous HIBE Schemes

Scheme	[BW06]	[SKOS09]	[DCIP10]	[PL13]	[LPL13],[RS13]	A-CC-HIBE
Pairing	Type-1	Composite	Composite	Type-1	Type-3	Type-3
Security	selective-id	selective-id	adaptive-id	selective-id	adaptive-id	adaptive-id
Assump.	DLin,DBDH	ℓ-wBDH*, ℓ-cDH	Subgroup Decision	h-BDHE Aug. <i>h</i> -DLin	LW1,LW2,DBDH [LPL13]:3-DH,XDH [RS13]:A1	XDH
Deg.	O(1)	O(1)	O(q)	O(1)	O(q)	O(q)
#pp	$(2(h^2+3h+2),1)$	(h + 6, 1)	(h+4,1)	(h + 6, 1)	(3h + 6, 1)	(h + 4, 1)
#msk	$h^2 + 5h + 7$	h + 4	2	4	h + 6	2h + 6
#cpr	2h + 5	3	2	4	6	3
#key	$(h+3)(3h-\ell+5)$	$3(h-\ell+3)$	$2(h-\ell+2)$	$3(h - \ell + 4)$	$6(h - \ell + 2)$	$4(h-\ell)+10$
Enc	$(2(\ell + 3)(h + 2) + 1, 1)$	$(\ell + 6, 1)$	$(\ell + 4, 1)$	$(\ell + 5, 1)$	$(3(\ell + 2), 1)$	$(\ell + 4, 1)$
Dec	2h + 3	4	2	4	6	3
KGen	$ \begin{array}{c} h^3 + h^2(5-\ell) + \\ h(7-3\ell) - 2\ell + 2 \end{array} $	$3h-2\ell+2$	$4(h+2-3\ell)$	$(h+2(h-\ell+8))$	$6h-5\ell+12$	$2(2h - 2\ell + 5)$
Deleg.	5(h+2)(h+3)+1	$6(h - \ell) + 21$	$4(h - \ell) + 11$	$(4(h - \ell) + 25)$	$2(h - \ell + 3)$	$4(h-\ell+5)$

h: maximum depth; ℓ : length of the identity tuple; q: no. of key-extract queries; Pairing: $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$; \mathcal{PP} and ciphertexts in \mathbb{G}_1 ; \mathcal{MSK} and keys in \mathbb{G}_2 . #pp = (a, b): a elements of \mathbb{G}_1 and b elements of \mathbb{G}_T ; Enc = (a, b): a scalar

multiplications (sm) in \mathbb{G}_1 and b exps. in \mathbb{G}_T ; Dec: #pairings; KGen: #sm in \mathbb{G}_2 ;

Deleg: #sm in \mathbb{G}_2 .

Anonymous HIBE Schemes

Scheme	[BW06]	[SKOS09]	[DCIP10]	[PL13]	[LPL13],[RS13]	A-CC-HIBE
Pairing	Type-1	Composite	Composite	Type-1	Type-3	Type-3
Security	selective-id	selective-id	adaptive-id	selective-id	adaptive-id	adaptive-id
Assump.	DLin,DBDH	ℓ-wBDH*, ℓ-cDH	Subgroup Decision	h-BDHE Aug. <i>h</i> -DLin	LW1,LW2,DBDH [LPL13]:3-DH,XDH [RS13]:A1	XDH
Deg.	O(1)	O(1)	O(q)	O(1)	O(q)	O(q)
#pp	$(2(h^2+3h+2),1)$	(h+6,1)	(h+4,1)	(h + 6, 1)	(3h + 6, 1)	(h + 4, 1)
#msk	$h^2 + 5h + 7$	h + 4	2	4	h + 6	2h + 6
#cpr	2h + 5	3	2	4	6	3
#key	$(h+3)(3h-\ell+5)$	$3(h-\ell+3)$	$2(h-\ell+2)$	$3(h - \ell + 4)$	$6(h - \ell + 2)$	$4(h-\ell)+10$
Enc	$(2(\ell + 3)(h + 2) + 1, 1)$	$(\ell + 6, 1)$	$(\ell + 4, 1)$	$(\ell + 5, 1)$	$(3(\ell + 2), 1)$	$(\ell + 4, 1)$
Dec	2h + 3	4	2	4	6	3
KGen	$ \begin{array}{c} h^3 + h^2(5-\ell) + \\ h(7-3\ell) - 2\ell + 2 \end{array} $	$3h-2\ell+2$	$4(h+2-3\ell)$	$(h+2(h-\ell+8))$	$6h-5\ell+12$	$2(2h - 2\ell + 5)$
Deleg.	5(h+2)(h+3)+1	$6(h - \ell) + 21$	$4(h - \ell) + 11$	$(4(h-\ell)+25)$	$2(h - \ell + 3)$	$4(h-\ell+5)$

[LPL13], [RS13] anonymity comes as a by-product of dual-system proof

JR-IBE structure supports non-anonymous HIBE with dual system proof

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Anonymous HIBE Schemes

Scheme	[BW06]	[SKOS09]	[DCIP10]	[PL13]	[LPL13],[RS13]	A-CC-HIBE
Pairing	Type-1	Composite	Composite	Type-1	Type-3	Type-3
Security	selective-id	selective-id	adaptive-id	selective-id	adaptive-id	adaptive-id
Assump.	DLin,DBDH	ℓ-wBDH*, ℓ-cDH	Subgroup Decision	h-BDHE Aug. h-DLin	LW1,LW2,DBDH [LPL13]:3-DH,XDH [RS13]:A1	XDH
Deg.	O(1)	O(1)	O(q)	O(1)	O(q)	O(q)
#pp	$(2(h^2+3h+2),1)$	(h+6,1)	(h+4,1)	(h + 6, 1)	(3h + 6, 1)	(h + 4, 1)
#msk	$h^2 + 5h + 7$	h + 4	2	4	h + 6	2h + 6
#cpr	2h + 5	3	2	4	6	3
#key	$(h+3)(3h-\ell+5)$	$3(h-\ell+3)$	$2(h-\ell+2)$	$3(h - \ell + 4)$	$6(h - \ell + 2)$	$4(h-\ell)+10$
Enc	$(2(\ell + 3)(h + 2) + 1, 1)$	$(\ell + 6, 1)$	$(\ell + 4, 1)$	$(\ell + 5, 1)$	$(3(\ell + 2), 1)$	$(\ell + 4, 1)$
Dec	2h + 3	4	2	4	6	3
KGen	$ \begin{array}{c} h^3 + h^2(5-\ell) + \\ h(7-3\ell) - 2\ell + 2 \end{array} $	$3h-2\ell+2$	$4(h+2-3\ell)$	$(h+2(h-\ell+8))$	$6h-5\ell+12$	$2(2h - 2\ell + 5)$
Deleg.	5(h+2)(h+3)+1	$6(h - \ell) + 21$	$4(h - \ell) + 11$	$(4(h-\ell)+25)$	$2(h - \ell + 3)$	$4(h-\ell+5)$

[LPL13], [RS13] anonymity comes as a by-product of dual-system proof

JR-IBE structure supports non-anonymous HIBE with dual system proof

Non-Anonymous HIBE Schemes

Scheme	[BBG05]	[CS06]	[CS07]	[LW10]	CC-HIBE
Pairing	Type-1	Type-1	Type-1	Composite	Type-3
Security	selective-id	adaptive-id	selective+-id	adaptive-id	adaptive-id
Assump.	Decision h-wBDHI	h-wDBDHI*	<i>h</i> -wDBDHI*	Subgroup Decision	XDH
Deg.	1	$O((kq2^{N/k})^h)$	1	O(q)	O(q)
#pp	(h+4,0)	(h+3+hk,0)	(2h+3,1)	(h+3,1)	(3h+9,1)
#msk	1	1	1	1	2
#cpr	2	2	3	2	3
#key	$h-\ell+2$	$(k+1)(h-\ell)+2$	$2(h-\ell+1)$	$h-\ell+2$	$2(h-\ell)+5$
Enc	$(\ell+2,1)$	(2,1)	$(\ell+2,1)$	$(\ell+2,1)$	$(\ell+4,1)$
Dec	2	2	2	2	3
KGen	h+2	$2(h-\ell+1)$	$2h - \ell + 2$	$2h-\ell+4$	2h + 5
Deleg.	$\ell + 2$	$2(h-\ell)$	$2h-\ell+1$	$2h-\ell+6$	2h + 9

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Exact comparison with Chen and Wee [Crypto'13] (non-anonymous) compact HIBE from n-Lin assumptions not provided here.

Construction and proof present in the non-existent full version on ePrint! Received a link to the full version today at 16:09.

Sizes of public parameters and ciphertexts of our scheme are better.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exact comparison with Chen and Wee [Crypto'13] (non-anonymous) compact HIBE from n-Lin assumptions not provided here.

Construction and proof present in the non-existent full version on ePrint! Received a link to the full version today at 16:09.

Sizes of public parameters and ciphertexts of our scheme are better.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exact comparison with Chen and Wee [Crypto'13] (non-anonymous) compact HIBE from n-Lin assumptions not provided here.

Construction and proof present in the non-existent full version on ePrint! Received a link to the full version today at 16:09.

Sizes of public parameters and ciphertexts of our scheme are better.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで