COPS: The Curious Case of PPEnc

Sanjit Chatterjee and M. Prem Laxman Das

Rump Session, Asiacrypt 2013

Chatterjee and Das

COPS: Property Preserving Encryption Rump Session, Asiacrypt 2013 1 / 7

- Menezes: Cryptanalysis Of Provable Security.
- Pandey-Rouselakis [PR] Property Preserving Encryption.

- Menezes: Cryptanalysis Of Provable Security.
- Pandey-Rouselakis [PR] Property Preserving Encryption.
 - Definition and Security Notions of PPEnc.
 - Separation results.
 - Provably secure scheme for testing orthogonality.

- Menezes: Cryptanalysis Of Provable Security.
- Pandey-Rouselakis [PR] Property Preserving Encryption.
 - Definition and Security Notions of PPEnc.
 - Separation results.
 - Provably secure scheme for testing orthogonality.
 - Three theorems.

- Menezes: Cryptanalysis Of Provable Security.
- Pandey-Rouselakis [PR] Property Preserving Encryption.
 - Definition and Security Notions of PPEnc.
 - Separation results.
 - Provably secure scheme for testing orthogonality.
 - Three theorems.

COPS Philosophy: Concrete analysis of concrete situation

PPTag to Test Orthogonality of Vectors

Given ciphertext of $\overrightarrow{x} = (x_1, x_2)$ and $\overrightarrow{y} = (y_1, y_2)$

Check: $\vec{x} \cdot \vec{y} \stackrel{?}{=} 0$ (and no other *meaningful* information)

PPTag to Test Orthogonality of Vectors

Given ciphertext of $\overrightarrow{x} = (x_1, x_2)$ and $\overrightarrow{y} = (y_1, y_2)$ Check: $\overrightarrow{x} \cdot \overrightarrow{y} \stackrel{?}{=} 0$ (and no other *meaningful* information) **Setup** $e : \mathbb{G} \times \mathbb{G} \longrightarrow \mathbb{G}_T$, $|\mathbb{G}| = |\mathbb{G}_T| = N = pq$ Select $(\gamma_1, \gamma_2) \in \mathbb{Z}_q$ s.t $\gamma_1^2 + \gamma_2^2 = \delta^2 \pmod{q}$ $\mathbb{G}_p = \langle g_0 \rangle$, $\mathbb{G}_q = \langle g_1 \rangle$, $\mathcal{M} = (\mathbb{Z}_N^* \bigcup \{0\})^2$ $PP = \langle N, \mathbb{G}, \mathbb{G}_T, e \rangle$, $SK = \langle g_0, g_1, \gamma_1, \gamma_2, \delta \rangle$,

 $\begin{array}{l} \textbf{Encrypt} \ M = (m_1, m_2) \\ \textbf{Select} \ \phi, \psi \in_R \mathbb{Z}_N \end{array}$

$$\mathcal{CT} = (\mathit{ct}_0, \mathit{ct}_1, \mathit{ct}_2) = \left(g_1^{\psi\delta}, g_0^{\phi m_1} \cdot g_1^{\psi\gamma_1}, g_0^{\phi m_2} \cdot g_1^{\psi\gamma_2}\right)$$

Test(PP, $CT^{(1)}$, $CT^{(2)}$): outputs 1 iff

$$\prod_{i=1}^{2} e(ct_{i}^{(1)}, ct_{i}^{(2)}) = e(ct_{0}^{(1)}, ct_{0}^{(2)}).$$

Test checks

$$e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}\delta^2} \stackrel{?}{=} e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}(\gamma_1^2+\gamma_2^2)} e(g_0,g_0)^{\psi^{(1)}\psi^{(2)}(m_1^{(1)}m_1^{(2)}+m_2^{(1)}m_2^{(2)})}$$

Recall

$$\gamma_1^2 + \gamma_2^2 = \delta^2 \pmod{q}$$

문 > 문

Test checks

$$e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}\delta^2} \stackrel{?}{=} e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}(\gamma_1^2+\gamma_2^2)} e(g_0,g_0)^{\psi^{(1)}\psi^{(2)}(m_1^{(1)}m_1^{(2)}+m_2^{(1)}m_2^{(2)})}$$

Recall

$$\gamma_1^2 + \gamma_2^2 = \delta^2 \pmod{q}$$

Theorem [PR]: Advantage of \mathcal{A} in the strongest security game (LoR) is at most $O((nQ + W)^2 \cdot 2^{-\lambda})$.

Test checks

$$e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}\delta^2} \stackrel{?}{=} e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}(\gamma_1^2+\gamma_2^2)} e(g_0,g_0)^{\psi^{(1)}\psi^{(2)}(m_1^{(1)}m_1^{(2)}+m_2^{(1)}m_2^{(2)})}$$

Recall

$$\gamma_1^2 + \gamma_2^2 = \delta^2 \pmod{q}$$

Theorem [PR]: Advantage of \mathcal{A} in the strongest security game (LoR) is at most $O((nQ + W)^2 \cdot 2^{-\lambda})$. **Proof:** Full Version.

Test checks

$$e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}\delta^2} \stackrel{?}{=} e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}(\gamma_1^2+\gamma_2^2)} e(g_0,g_0)^{\psi^{(1)}\psi^{(2)}(m_1^{(1)}m_1^{(2)}+m_2^{(1)}m_2^{(2)})}$$

Recall

$$\gamma_1^2 + \gamma_2^2 = \delta^2 \pmod{q}$$

Theorem [PR]: Advantage of \mathcal{A} in the strongest security game (LoR) is at most $O((nQ + W)^2 \cdot 2^{-\lambda})$. **Proof:** Full Version.

COPS Recall what your *Guru* once said:

Never be fooled by a zero-knowledge proof!

Test checks

$$e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}\delta^2} \stackrel{?}{=} e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}(\gamma_1^2+\gamma_2^2)} e(g_0,g_0)^{\psi^{(1)}\psi^{(2)}(m_1^{(1)}m_1^{(2)}+m_2^{(1)}m_2^{(2)})}$$

Recall

$$\gamma_1^2 + \gamma_2^2 = \delta^2 \pmod{q}$$

Theorem [PR]: Advantage of \mathcal{A} in the strongest security game (LoR) is at most $O((nQ + W)^2 \cdot 2^{-\lambda})$. **Proof:** Full Version.

COPS Recall what your *Guru* once said:

Never be fooled by a zero-knowledge proof!

$$\delta^2 = \gamma_1^2 + \gamma_2^2 =$$

Test checks

$$e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}\delta^2} \stackrel{?}{=} e(g_1,g_1)^{\phi^{(1)}\phi^{(2)}(\gamma_1^2+\gamma_2^2)} e(g_0,g_0)^{\psi^{(1)}\psi^{(2)}(m_1^{(1)}m_1^{(2)}+m_2^{(1)}m_2^{(2)})}$$

Recall

$$\gamma_1^2 + \gamma_2^2 = \delta^2 \pmod{q}$$

Theorem [PR]: Advantage of \mathcal{A} in the strongest security game (LoR) is at most $O((nQ + W)^2 \cdot 2^{-\lambda})$. **Proof:** Full Version.

COPS Recall what your *Guru* once said:

Never be fooled by a zero-knowledge proof!

$$\delta^2 = \gamma_1^2 + \gamma_2^2 = \gamma_1(\gamma_1 + \gamma_2) + \gamma_2(\gamma_2 - \gamma_1) \pmod{q}$$

(i) COPS sends challenges $\overrightarrow{m_0^*} = (1,0)$ and $\overrightarrow{m_1^*} = (0,1)$. COPS has to decide which $\overrightarrow{m_b^*}$ is encrypted as challenge cipher.

- (i) COPS sends challenges $\overrightarrow{m_0^*} = (1,0)$ and $\overrightarrow{m_1^*} = (0,1)$. COPS has to decide which $\overrightarrow{m_b^*}$ is encrypted as challenge cipher.
- (ii) COPS asks for the encryption of $\overrightarrow{m} = (1, 1)$ and receives:

$$(C_0, C_1, C_2) = (g_1^{\psi \delta}, g_0^{1 \cdot \phi} g_1^{\psi \gamma_1}, g_0^{1 \cdot \phi} g_1^{\psi \gamma_2})$$

- (i) COPS sends challenges $\overrightarrow{m_0^*} = (1,0)$ and $\overrightarrow{m_1^*} = (0,1)$. COPS has to decide which $\overrightarrow{m_b^*}$ is encrypted as challenge cipher.
- (ii) COPS asks for the encryption of $\overrightarrow{m} = (1, 1)$ and receives:

$$(C_0, C_1, C_2) = (g_1^{\psi\delta}, g_0^{1\cdot\phi}g_1^{\psi\gamma_1}, g_0^{1\cdot\phi}g_1^{\psi\gamma_2})$$

(iii) COPS does some juggling:

$$(C_0, C_1 \cdot C_2, C_2/C_1) = \langle g_1^{\psi\delta}, g_0^{2\phi} g_1^{\psi(\gamma_1+\gamma_2)}, g_1^{\psi(\gamma_2-\gamma_1)} \rangle.$$

- (i) COPS sends challenges $\overrightarrow{m_0^*} = (1,0)$ and $\overrightarrow{m_1^*} = (0,1)$.
 - COPS has to decide which $\overrightarrow{m_b^*}$ is encrypted as challenge cipher.
- (ii) COPS asks for the encryption of $\overrightarrow{m} = (1, 1)$ and receives:

$$(C_0, C_1, C_2) = (g_1^{\psi\delta}, g_0^{1\cdot\phi}g_1^{\psi\gamma_1}, g_0^{1\cdot\phi}g_1^{\psi\gamma_2})$$

(iii) COPS does some juggling:

$$(C_0, C_1 \cdot C_2, C_2/C_1) = \langle g_1^{\psi\delta}, g_0^{2\phi} g_1^{\psi(\gamma_1 + \gamma_2)}, g_1^{\psi(\gamma_2 - \gamma_1)} \rangle.$$

Lo and behold: COPS has a (pseudo)-ciphertext for (2,0) and (2,0) is orthogonal to (0,1) but not to (1,0).

The public Test allows COPS to distinguish an encryption of (0, 1) from (1, 0).

PR-PPEnc is not secure even in the weaker selective-FtG definition.

Chatterjee and Das

...assuming I'm able to bribe DANJA!

- Spicy home-made Bengali food!
- Wild elephants at Bandipur forest!

...assuming I'm able to bribe DANJA!

- Spicy home-made Bengali food!
- Wild elephants at Bandipur forest!
- PR states two separation results of security notions of PPEnc.
 - Assumes the existence of a particular type of PPEnc secure under certain notions of security.
 - The theorems stand vacuous in the absence of a concrete scheme.
- We fill this gap by showing the existence of such scheme.
- For details:

PROPERTY PRESERVING SYMMETRIC ENCRYPTION: REVISITED